Extensions 1→N→G→Q→1 with N=C2 and Q=C23×D7

Direct product G=N×Q with N=C2 and Q=C23×D7
dρLabelID
D7×C24112D7xC2^4224,196


Non-split extensions G=N.Q with N=C2 and Q=C23×D7
extensionφ:Q→Aut NdρLabelID
C2.1(C23×D7) = D7×C22×C4central extension (φ=1)112C2.1(C2^3xD7)224,175
C2.2(C23×D7) = C23×Dic7central extension (φ=1)224C2.2(C2^3xD7)224,187
C2.3(C23×D7) = C22×Dic14central stem extension (φ=1)224C2.3(C2^3xD7)224,174
C2.4(C23×D7) = C22×D28central stem extension (φ=1)112C2.4(C2^3xD7)224,176
C2.5(C23×D7) = C2×C4○D28central stem extension (φ=1)112C2.5(C2^3xD7)224,177
C2.6(C23×D7) = C2×D4×D7central stem extension (φ=1)56C2.6(C2^3xD7)224,178
C2.7(C23×D7) = C2×D42D7central stem extension (φ=1)112C2.7(C2^3xD7)224,179
C2.8(C23×D7) = D46D14central stem extension (φ=1)564C2.8(C2^3xD7)224,180
C2.9(C23×D7) = C2×Q8×D7central stem extension (φ=1)112C2.9(C2^3xD7)224,181
C2.10(C23×D7) = C2×Q82D7central stem extension (φ=1)112C2.10(C2^3xD7)224,182
C2.11(C23×D7) = Q8.10D14central stem extension (φ=1)1124C2.11(C2^3xD7)224,183
C2.12(C23×D7) = D7×C4○D4central stem extension (φ=1)564C2.12(C2^3xD7)224,184
C2.13(C23×D7) = D48D14central stem extension (φ=1)564+C2.13(C2^3xD7)224,185
C2.14(C23×D7) = D4.10D14central stem extension (φ=1)1124-C2.14(C2^3xD7)224,186
C2.15(C23×D7) = C22×C7⋊D4central stem extension (φ=1)112C2.15(C2^3xD7)224,188

׿
×
𝔽